日韩在线视频不卡-日一区二区三区-天堂国产+人+综合+亚洲欧美-精品国产一区二区三区久久狼-国产成人无码18禁午夜福利网址-国产在线拍偷自揄拍精品-九色91丨porny丨丝袜-久久天天躁狠狠躁夜夜av-99蜜桃臀久久久欧美精品-成人一区二区视频-狠狠操人人干-40岁干柴烈火少妇高潮不断-国产福利不卡-伊人98-丰满多毛的陰户视频-日韩一二三四五区-国产专区一线二线三线码-好男人社区影院www-国产精品2019-欧美三级一区

Your Good Partner in Biology Research

巨噬細(xì)胞遷移抑制因子(MIF):連接炎癥與腫瘤的多效性靶點(diǎn)

日期:2025-11-17 16:57:21


1. MIF的背景:結(jié)構(gòu)、表達(dá)調(diào)控與基本生物學(xué)特性

巨噬細(xì)胞遷移抑制因子(MIF)最初因抑制巨噬細(xì)胞遷移而得名,現(xiàn)已被廣泛認(rèn)定為一種具有促炎和趨化特性的多效性細(xì)胞因子,可由多種免疫和非免疫細(xì)胞分泌,參與炎癥、自身免疫和腫瘤等多種病理過程 [1-3]。

MIF獨(dú)特之處在于其為糖皮質(zhì)激素抗炎作用的內(nèi)源性反調(diào)節(jié)因子 [3],在免疫平衡中居于核心地位。通過與CD74、CXCR2、CXCR4等受體結(jié)合,MIF形成復(fù)雜信號網(wǎng)絡(luò)并介導(dǎo)多樣生物學(xué)效應(yīng) [4-6]。

1.1 MIF的結(jié)構(gòu)與催化活性

MIF獨(dú)特的分子特征在于其具有內(nèi)在的酮-烯醇互變異構(gòu)酶活性,使其不同于多數(shù)經(jīng)典細(xì)胞因子 [3]。MIF以三聚體形式存在,其活性位點(diǎn)結(jié)構(gòu)賦予其催化潛能,能夠參與多種炎癥相關(guān)反應(yīng) [1]。其分子動力學(xué)特征與生物活性密切相關(guān),對藥物設(shè)計(jì)具有重要意義 [17]。

靶向MIF酶活性成為治療研究重點(diǎn)。例如,KRP-6作為高效MIF酮酶抑制劑,可阻斷M1巨噬細(xì)胞極化及氧化應(yīng)激反應(yīng) [16]。而T-614(iguratimod)作為臨床抗風(fēng)濕藥,通過變構(gòu)方式抑制MIF三聚體,呈非競爭性動力學(xué)特征 [1,3]。此外,MIF-2也具有類似催化活性,其特異抑制劑4-CPPC可選擇性阻斷MIF-2與CD74結(jié)合,為家族功能研究提供工具 [10]。這些研究揭示MIF酶活與結(jié)構(gòu)特征對其生物學(xué)作用至關(guān)重要。

1.2 表達(dá)調(diào)控與遺傳變異

MIF的表達(dá)受多層調(diào)控,涉及轉(zhuǎn)錄、翻譯及外界刺激反應(yīng)。病原體相關(guān)分子模式(如LPS)可誘導(dǎo)MIF表達(dá),表明其在先天免疫中作用顯著 [18]。

轉(zhuǎn)錄因子ICBP90(UHRF1)通過結(jié)合MIF基因啟動子區(qū)的?794 CATT重復(fù)序列調(diào)控其轉(zhuǎn)錄活性,該位點(diǎn)長度與MIF表達(dá)及糖皮質(zhì)激素抵抗顯著相關(guān) [19]。此外,MIF啟動子多態(tài)性(?173 G/C、?794 CATT)與阿爾茨海默病等疾病風(fēng)險(xiǎn)顯著相關(guān) [20]。這些變異可影響MIF的表達(dá)效率及個(gè)體對疾病的易感性 [21,22]。理解其遺傳調(diào)控機(jī)制對于闡釋MIF相關(guān)疾病的發(fā)病與藥物反應(yīng)具有重要價(jià)值。

1.3 基本生物學(xué)功能

MIF在細(xì)胞增殖、遷移及炎癥反應(yīng)中發(fā)揮核心作用。研究表明,重組MIF能在胃癌細(xì)胞中濃度依賴性促進(jìn)細(xì)胞增殖并加速G1/S期轉(zhuǎn)換 [23]。其機(jī)制涉及上調(diào)Cyclin D1、下調(diào)p27(Kip1),并激活PI3K/Akt信號通路。PI3K抑制劑LY294002可完全阻斷這些效應(yīng) [23]。

這些發(fā)現(xiàn)表明,MIF通過調(diào)控PI3K/Akt-Cyclin D1軸促進(jìn)細(xì)胞增殖,揭示其在腫瘤發(fā)展中的關(guān)鍵作用。

1.4 MIF家族成員MIF-2/DDT

MIF-2(DDT)是MIF家族的第二成員,與MIF-1共享酮-烯醇互變異構(gòu)酶活性和受體結(jié)合特性 [10]。通過大規(guī)?;衔锖Y選發(fā)現(xiàn)4-CPPC可選擇性抑制MIF-2酶活并阻斷其與CD74結(jié)合,而不影響MIF-1-CD74信號 [10]。該研究揭示MIF-2在結(jié)構(gòu)與功能上具有獨(dú)特性,為開發(fā)高選擇性靶向藥物提供新方向。


2. MIF的受體與信號通路

2.1 MIF的受體及相互作用

2.1.1 CD74作為高親和力受體

CD74原為MHC II伴侶分子,但同時(shí)也是MIF的高親和力受體,可獨(dú)立介導(dǎo)多種生物學(xué)功能 [24]。在活化的T細(xì)胞中,CD74顯著上調(diào)并與CXCR4形成復(fù)合體參與MIF誘導(dǎo)的遷移 [4]。在多種腫瘤中,CD74-MIF信號通過ERK、AKT等通路促進(jìn)細(xì)胞增殖、遷移及治療抵抗 [12,29,30]

在乳腺癌中,AEP-CD74軸激活ERK信號促進(jìn)EMT,而抑制AEP和CD74可顯著減少轉(zhuǎn)移 [32]。在多發(fā)性骨髓瘤、膠質(zhì)母細(xì)胞瘤等中,MIF/CD74信號上調(diào)與免疫逃逸及治療耐受相關(guān) [33-35]。此外,MIF/CD74軸在重癥肌無力、子宮內(nèi)膜異位癥等疾病中同樣具有調(diào)控作用 [36,37]。

2.1.2 CXCR2與CXCR4的趨化作用

MIF雖缺乏典型趨化因子結(jié)構(gòu),卻能通過N-like環(huán)與偽ELR基序結(jié)合CXCR2及CXCR4 [38]。RLR序列在與CXCR4結(jié)合中起關(guān)鍵作用,其結(jié)合模式不同于CXCL12 [39]。MIF作為CXCR4的部分變構(gòu)激動劑,能調(diào)節(jié)非經(jīng)典G蛋白信號通路 [38,40]。MIF-CXCR4軸在動脈粥樣硬化、神經(jīng)母細(xì)胞瘤等疾病中促進(jìn)細(xì)胞存活和遷移 [8],并與NFKB2通路共同參與急性髓系白血病耐藥機(jī)制 [41]。此外,sCD74可通過抑制CXCR4-AKT軸誘導(dǎo)心肌細(xì)胞壞死性凋亡,在心衰中具有調(diào)節(jié)作用 [14]

針對MIF-CXCR4的選擇性抑制策略如肽類msR4M-L1,可特異阻斷該通路而保留CXCL12-CXCR4保護(hù)作用,在動脈粥樣硬化模型中表現(xiàn)出良好療效 [42]。

2.2 MIF下游信號通路

MIF通過激活多條信號通路調(diào)控細(xì)胞增殖、炎癥、代謝與免疫反應(yīng)。主要通路包括ERK、JNK、NF-κB及PI3K/Akt等,其下游效應(yīng)涵蓋細(xì)胞存活、遷移、炎癥因子釋放及免疫極化等。

2.2.1 炎癥與增殖信號

MIF結(jié)合CD74及共受體CD44后可激活ERK、JNK和NF-κB通路 [24,30]。在甲狀腺癌中,抑制MIF/CD74內(nèi)吞的4-IPP可激活JNK通路并誘導(dǎo)細(xì)胞凋亡,提示該軸在細(xì)胞存活與增殖調(diào)控中的重要性 [30]

在乳腺癌轉(zhuǎn)移模型中,AEP通過CD74激活ERK信號增強(qiáng)上皮-間質(zhì)轉(zhuǎn)化,而抑制AEP與CD74可顯著抑制癌細(xì)胞遷移 [32]。在膠質(zhì)母細(xì)胞瘤中,MIF/CD74信號抑制劑MN-166能降低ERK磷酸化并延長患者無進(jìn)展生存期 [35]。此外,MIF-CD74軸的阻斷可增強(qiáng)放療誘導(dǎo)的M1極化反應(yīng),提高腦轉(zhuǎn)移模型的放射敏感性 [29]

κB通路亦為MIF炎癥調(diào)控的核心。研究表明,F(xiàn)LT3突變型急性髓系白血病中,TKI治療后MIF及CXCR2上調(diào)并激活非經(jīng)典NFKB2通路。抑制NFKB2可顯著下調(diào)MIF及相關(guān)炎癥基因表達(dá) [41]

此外,小分子抑制劑CSB6B可通過促進(jìn)MIF降解并抑制NF-κB活化,阻斷破骨細(xì)胞分化,提示該通路在炎癥性骨病中的作用 [43]

在肺部組織中,WISP1可誘導(dǎo)MIF及其受體CD74、CD44的表達(dá),通過Src激活EGFR并啟動NF-κB、PI3K/Akt等多通路信號,促進(jìn)炎癥因子和重塑相關(guān)分子表達(dá),揭示W(wǎng)ISP1-MIF軸在氣道炎癥中的重要調(diào)控功能 [31]

此外,MIF還參與類風(fēng)濕關(guān)節(jié)炎的炎癥放大與Th17細(xì)胞分化 [44],并介導(dǎo)慢性疼痛模型中的神經(jīng)炎癥反應(yīng) [45]。綜上,MIF通過多層級信號網(wǎng)絡(luò)調(diào)控細(xì)胞功能,形成炎癥-增殖-遷移的病理環(huán)。

2.2.2 代謝調(diào)控與免疫分化

MIF不僅是炎癥介質(zhì),也深度參與免疫代謝調(diào)控。在類風(fēng)濕關(guān)節(jié)炎中,MIF促進(jìn)Th17細(xì)胞分化,通過與ATF6直接結(jié)合增強(qiáng)ATF6通路活性,進(jìn)而調(diào)控STAT3與RORC等基因表達(dá),驅(qū)動Th17分化并加劇疾病進(jìn)程 [44]

在腫瘤微環(huán)境中,MIF通過影響巨噬細(xì)胞極化和能量代謝促進(jìn)免疫逃逸。例如在骨肉瘤中,乳酸水平升高通過組蛋白H3K9乳?;险{(diào)MIF表達(dá),從而驅(qū)動巨噬細(xì)胞M2極化 [46]。MIF抑制劑4-IPP與PD-1抗體聯(lián)合可顯著抑制腫瘤生長,顯示出免疫治療協(xié)同潛力 [46]。

此外,MIF受雌激素-GPER通路調(diào)控,缺氧環(huán)境可誘導(dǎo)MIF與HIF-1α上調(diào),而激活GPER能降低二者水平,提示MIF在內(nèi)分泌應(yīng)激適應(yīng)中具關(guān)鍵作用 [47]。

2.3 與其他分子的互作

MIF可與其他趨化因子形成異源復(fù)合物以調(diào)節(jié)功能。例如,MIF與血小板來源的CXCL4L1形成高親和力復(fù)合物,阻斷MIF介導(dǎo)的T細(xì)胞趨化與血栓形成 [5]。這一復(fù)合物通過干擾MIF與CXCR4結(jié)合路徑,起到內(nèi)源性抑制作用 [5]

此外,可溶性CD74(sCD74)可與MIF協(xié)同誘導(dǎo)心臟成纖維細(xì)胞壞死性凋亡。機(jī)制上,sCD74削弱MIF介導(dǎo)的AKT活化,促進(jìn)p38通路激活并誘導(dǎo)RIP1/RIP3依賴性壞死。心力衰竭患者血清中sCD74/MIF比值顯著降低,提示該軸具有潛在生物標(biāo)志物意義 [14]。

這些研究表明,MIF通過與不同分子的互作精細(xì)調(diào)節(jié)信號強(qiáng)度與方向性,是其多效性的分子基礎(chǔ)。


3. MIF在相關(guān)疾病中的作用

MIF廣泛參與腫瘤、免疫、代謝及心血管疾病的病理過程,其促炎與促生存特性使其成為疾病進(jìn)展的重要調(diào)控因子。

3.1 MIF與腫瘤發(fā)生發(fā)展

MIF在多種癌癥中表現(xiàn)出促腫瘤活性。

在胃癌中,MIF促進(jìn)細(xì)胞增殖與G1/S轉(zhuǎn)化,通過上調(diào)Cyclin D1、下調(diào)p27并激活PI3K/Akt信號實(shí)現(xiàn) [23]。在胰腺癌中,MIF抑制劑ISO-1可有效阻斷腫瘤生長并抑制細(xì)胞遷移侵襲 [48]。在肝細(xì)胞癌中,MIF抑制與mTOR通路調(diào)節(jié)相關(guān) [27]。

MIF在腫瘤侵襲與轉(zhuǎn)移中亦發(fā)揮關(guān)鍵作用。神經(jīng)母細(xì)胞瘤中,骨髓微環(huán)境誘導(dǎo)CXCR4上調(diào),增強(qiáng)MIF信號及PI3K/AKT、ERK活性;抑制MIF可延緩腫瘤進(jìn)展并提高化療敏感性 [8]。乳腺癌中,AEP-CD74-ERK通路促進(jìn)EMT,抑制該軸可顯著抑制轉(zhuǎn)移 [32]

在骨肉瘤中,乳酸經(jīng)組蛋白乳酰化增強(qiáng)MIF轉(zhuǎn)錄,驅(qū)動巨噬細(xì)胞M2極化;MIF抑制劑與PD-1抗體聯(lián)合治療可增強(qiáng)抗腫瘤免疫 [46]。GIST中MIF/CXCR4軸促進(jìn)巨噬細(xì)胞極化并與復(fù)發(fā)風(fēng)險(xiǎn)相關(guān) [7]

MIF在非小細(xì)胞肺癌腦轉(zhuǎn)移及頭頸鱗癌中通過HIF與NF-κB/IL-6軸共同促進(jìn)髓系細(xì)胞募集與血管生成 [6,29]

此外,MIF/CD74信號在甲狀腺癌、黑色素瘤及多發(fā)性骨髓瘤中上調(diào),與細(xì)胞存活、治療抵抗及免疫逃逸密切相關(guān) [28,30,33,34]

在臨床應(yīng)用方面,MIF血清水平在部分腫瘤中與預(yù)后相關(guān)。骨肉瘤患者治療前MIF水平升高與較差療效相關(guān),治療后下降提示預(yù)后改善 [51]。但在肺癌中,其單獨(dú)作為生物標(biāo)志物的效力有限 [25]。

這些研究表明,MIF通過調(diào)控細(xì)胞增殖、遷移及免疫微環(huán)境,系統(tǒng)性促進(jìn)腫瘤發(fā)生發(fā)展,并可能成為多癌種通用治療靶點(diǎn)。

3.2 炎癥與自身免疫疾病

MIF是強(qiáng)效促炎因子,其在類風(fēng)濕關(guān)節(jié)炎、哮喘及重癥肌無力等疾病中均有上調(diào) [1,15,37]。在RA中,MIF促進(jìn)Th17分化并加劇炎癥反應(yīng) [44];在過敏性哮喘模型中,MIF抑制劑SCD-19可有效緩解氣道炎癥與組織重塑 [15];在重癥肌無力中,MIF-CD74信號增強(qiáng)B細(xì)胞存活并與疾病嚴(yán)重程度正相關(guān) [37]。

MIF還參與急性肝損傷、慢性腎病及TAA誘導(dǎo)的腎毒性過程,表現(xiàn)為氧化應(yīng)激和促纖維化反應(yīng)增強(qiáng) [1,2,11]。其抑制劑如iguratimod可顯著提高肝損傷模型生存率并降低氧化應(yīng)激 [3]。

在神經(jīng)退行性疾病中,外周免疫細(xì)胞分泌的MIF可經(jīng)CD74-CD44信號加重阿爾茨海默病病理 [13]。心血管系統(tǒng)中,sCD74/MIF比值下降與心力衰竭進(jìn)展相關(guān) [14]。這些結(jié)果表明,MIF在多系統(tǒng)炎癥與免疫病理中發(fā)揮核心驅(qū)動作用。


4. MIF為藥物靶點(diǎn)的研究進(jìn)展

MIF(巨噬細(xì)胞移動抑制因子)作為重要的炎癥與免疫調(diào)節(jié)靶點(diǎn),相關(guān)藥物研發(fā)呈現(xiàn)多樣化趨勢。目前已有小分子化藥、抗體、PROTAC、基因治療等多種類型藥物在研,作用機(jī)制涵蓋MIF抑制、CD74抑制、oxMIF靶向等。這些藥物廣泛探索于腫瘤、炎癥性疾病、神經(jīng)退行性疾病、纖維化等多個(gè)領(lǐng)域。全球多家機(jī)構(gòu)參與研發(fā),多數(shù)項(xiàng)目處于臨床前階段,僅異丁司特已獲批上市,標(biāo)志著該靶點(diǎn)藥物研發(fā)正從基礎(chǔ)研究向臨床轉(zhuǎn)化推進(jìn)。

部分在研管線列舉如下表:

藥物 作用機(jī)制 藥物類型 在研適應(yīng)癥 在研機(jī)構(gòu) 最高研發(fā)階段
異丁司特 MIF抑制劑 | PDE10A抑制劑 | PDE11A抑制劑 | PDE3抑制劑 | PDE4抑制劑 | TLR4拮抗劑 小分子化藥 哮喘 | 腦出血 | 脊髓型頸椎病 | 肌萎縮側(cè)索硬化 | 新冠肺炎后遺癥等 KYORIN Pharmaceutical Co., Ltd. | The Ohio State University | MediciNova, Inc. | University of Pennsylvania | Portland VA Medical Center 批準(zhǔn)上市
Imalumab MIF抑制劑 | 免疫調(diào)節(jié)劑 單克隆抗體 腹水 | 結(jié)直腸癌 Cytokine PharmaSciences, Inc. 臨床2期
IPG-1094 MIF抑制劑 小分子化藥 狼瘡性腎炎 | 局部晚期惡性實(shí)體瘤 | 黑色素瘤 | 肺癌腦轉(zhuǎn)移 | 炎癥性腸病 南京艾美斐生物醫(yī)藥科技股份有限公司 臨床2期
Fibrosis(Apaxen) MIF抑制劑 化學(xué)藥 纖維化 Apaxen SA 臨床前
4-IPP MIF抑制劑 小分子化藥 急性髓性白血病 Centre Hospitalier Universitaire Vaudois 臨床前
MFC-1040 MIF抑制劑 | NLRP3抑制劑 小分子化藥 哮喘 | 特發(fā)性肺纖維化 | 肺動脈高壓 Sorbonne Paris Cité | Apaxen SA | Institut National de la Santé et de la Recherche Médicale | Université Paris-Saclay | Assistance Publique des Hôpitaux de Paris SA | Mifcare 臨床前
INV-88 MIF抑制劑 小分子化藥 腫瘤 | 神經(jīng)系統(tǒng)疾病 | 纖維化 | 血液腫瘤 | 類風(fēng)濕關(guān)節(jié)炎 | 實(shí)體瘤 Innovimmune Biotherapeutics, Inc. 臨床前
RGB097 MIF抑制劑 小分子化藥 腫瘤 University of Groningen 臨床前
Zr89-ON102 MIF抑制劑 診斷用放射藥物 實(shí)體瘤 OncoOne Research & Development GmbH 臨床前
THOR-213 CD74抑制劑 | MIF抑制劑 ASO 惡病質(zhì) Thor Therapeutics Inc. 臨床前
Hit-1(WuXi AppTec ) MIF抑制劑 小分子化藥 膿毒癥 無錫藥明康德新藥開發(fā)股份有限公司 | 南京醫(yī)科大學(xué) 臨床前
MD13 MIF 降解劑 | 蛋白降解 蛋白水解靶向嵌合體(PROTAC) 肺癌 University of Groningen 臨床前
Compound 37 (University of Pecs) MIF抑制劑 小分子化藥 膿毒性休克 University of Pecs 臨床前
ON05+Lu177-di-HSG Histamine succinyl glycine抑制劑 | MFN2調(diào)節(jié)劑 | oxMIF抑制劑 雙特異性抗體 | 治療用放射藥物 結(jié)直腸癌 | 頭頸部腫瘤 | 胰腺癌 | 胃癌 OncoOne Research & Development GmbH 臨床前
ISO-1 MIF抑制劑 小分子化藥 前列腺炎 | 椎間盤退化 | 肌炎 | 羅斯河熱 蘇州大學(xué) | University of Canberra | Griffith University | 安徽醫(yī)科大學(xué) | 江蘇大學(xué) 臨床前
MIF-PROTAC(Princess Máxima Center) MIF 降解劑 蛋白水解靶向嵌合體(PROTAC) 神經(jīng)母細(xì)胞瘤 Prinses Máxima Centrum voor Kinderoncologie BV 臨床前
PAANIB-1 MIF抑制劑 化學(xué)藥 帕金森病 The Johns Hopkins University 臨床前
ON-102 oxMIF抑制劑 診斷用放射藥物 炎癥 | 實(shí)體瘤 OncoOne Research & Development GmbH 臨床前
P-EHC MIF抑制劑 化學(xué)藥 缺血 | 再灌注損傷 中國藥科大學(xué) 臨床前
ON-203 oxMIF抑制劑 單克隆抗體 結(jié)直腸癌 | 肺癌 OncoOne Research & Development GmbH 臨床前
Napa-001(NapaJen Pharma) MIF抑制劑 寡核苷酸 潰瘍性結(jié)腸炎 | 類風(fēng)濕關(guān)節(jié)炎 NapaJen Pharma, Inc. 臨床前
ON-104 oxMIF抑制劑 單克隆抗體 腎炎 | 哮喘 | 炎癥性腸病 | 類風(fēng)濕關(guān)節(jié)炎 OncoOne Research & Development GmbH 臨床前
DRalpha1-hMOG-35-55 (Virogenomics Biodevelopment) CD74抑制劑 | HLA class II抗原調(diào)節(jié)劑 | MIF抑制劑 重組蛋白 多發(fā)性硬化癥 Virogenomics, Inc. 臨床前
MFC-2040 MIF抑制劑 小分子化藥 肺動脈高壓 Mifcare 臨床前
PAV-174 MIF抑制劑 小分子化藥 阿爾茨海默癥 Prosetta Biosciences, Inc. 臨床前
AAV-PHP.eB-MIF-HA MIF抑制劑 腺相關(guān)病毒基因治療 肌萎縮側(cè)索硬化 - 臨床前
M1 MIF抑制劑 單克隆抗體 炎癥 Zavod Republike Slovenije ZA Transfuzijsko Medicino 臨床前

(數(shù)據(jù)截止到2025年11月8日,來源于synapse)


5. MIF研究工具

巨噬細(xì)胞遷移抑制因子(MIF)是一種具有多效性的細(xì)胞因子,在炎癥、自身免疫性疾病、惡性腫瘤及多器官損傷中發(fā)揮關(guān)鍵作用。其獨(dú)特的糖皮質(zhì)激素反調(diào)節(jié)特性使其成為炎癥及免疫調(diào)控的重要分子靶點(diǎn)。華美生物提供MIF重組蛋白、抗體及ELISA試劑盒產(chǎn)品,助力您進(jìn)行相關(guān)機(jī)制研究及靶向藥物開發(fā)。


參考文獻(xiàn):

[1] Joshua Bloom, Georgios Pantouris, Mingzhu He, B. Aljabari, Lopa Mishra, Ramu Manjula, A. Parkins, E. Lolis, Yousef Al-Abed.(2024). Iguratimod, an allosteric inhibitor of macrophage migration inhibitory factor (MIF), prevents mortality and oxidative stress in a murine model of acetaminophen overdose.

[2] Bojan Jorga?evi?, S. Stankovi?, Jelena Filipovi?, J. Samard?i?, D. Vu?evi?, T. Radosavljevi?.(2022). Betaine modulates MIF-mediated oxidative stress, inflammation, and fibrogenesis in Thioacetamide-induced Nephrotoxicity.

[3] Joshua Bloom, C. Metz, Saisha A Nalawade, J. Casabar, K. Cheng, Mingzhu He, B. Sherry, T. Coleman, T. Forsthuber, Y. Al-Abed.(2016). Identification of Iguratimod as an Inhibitor of Macrophage Migration Inhibitory Factor (MIF) with Steroid-sparing Potential*.

[4] Lin Zhang, Iris Woltering, Mathias Holzner, Markus Brandhofer, Carl-Christian Schaefer, Genta Bushati, Simon Ebert, Bishan Yang, Maximilian Muenchhoff, J. Hellmuth, C. Scherer, Christian Wichmann, David Effinger, Max Hübner, O. El Bounkari, Patrick Scheiermann, J. Bernhagen, A. Hoffmann.(2024). CD74 is a functional MIF receptor on activated CD4+ T cells.

[5] Markus Brandhofer, A. Hoffmann, X. Blanchet, Elena Siminkovitch, Anne-Katrin Rohlfing, O. El Bounkari, Jeremy Nestele, Alexander Bild, Christos Kontos, Kathleen Hille, Vanessa Rohde, Adrian L. Fr?hlich, Jona Golemi, O. Gokce, C. Krammer, P. Scheiermann, N. Tsilimparis, N. Sachs, W. Kempf, L. Maegdefessel, Michael K. Otabil, R. Megens, H. Ippel, R. Koenen, Junfu Luo, B. Engelmann, K. Mayo, M. Gawaz, A. Kapurniotu, C. Weber, P. von Hundelshausen, J. Bernhagen.(2021). Heterocomplexes between the atypical chemokine MIF and the CXC-motif chemokine CXCL4L1 regulate inflammation and thrombus formation.

[6] G. Zhu, Yaling Tang, Ning Geng, Min Zheng, Jian Jiang, Ling Li, Kaide Li, Zhengge Lei, Wei Chen, Yun-long Fan, Xiang-rui Ma, Longjiang Li, Xiaoyi Wang, Xin-hua Liang.(2014). HIF-α/MIF and NF-κB/IL-6 axes contribute to the recruitment of CD11b+Gr-1+ myeloid cells in hypoxic microenvironment of HNSCC.

[7] Shuo-meng Xiao, Rui Xu, Ying-xin Yang, Rui Zhao, Yuan Xie, Xu-dan Lei, Xiao-ting Wu.(2024). Gastrointestinal stromal tumors regulate macrophage M2 polarization through the MIF/CXCR4 axis to immune escape.

[8] Laura Garcia-Gerique, Marta García, Alícia Garrido-Garcia, Soledad Gómez-González, M. Torrebadell, E. Prada, Guillem Pascual-Pasto, Oscar Mu?oz, S. Perez-Jaume, Isadora Lemos, Noelia Salvador, Mònica Vilà-Ubach, Ana Doncel-Requena, M. Su?ol, A. Carcaboso, J. Mora, C. Lavarino.(2022). MIF/CXCR4 signaling axis contributes to survival, invasion, and drug resistance of metastatic neuroblastoma cells in the bone marrow microenvironment.

[9] D. Rodrigues, Elisa B. Prestes, Leandro de Souza Silva, A. Pinheiro, J. Ribeiro, A. Dicko, P. Duffy, M. Fried, I. Francischetti, E. Saraiva, Heitor A. Paula Neto, M. Bozza.(2019). CXCR4 and MIF are required for neutrophil extracellular trap release triggered by Plasmodium-infected erythrocytes.

[10] P. Tilstam, G. Pantouris, M. Corman, M. Andreoli, K. Mahboubi, G. Davis, Xin Du, L. Leng, E. Lolis, R. Bucala.(2019). A selective small-molecule inhibitor of macrophage migration inhibitory factor-2 (MIF-2), a MIF cytokine superfamily member, inhibits MIF-2 biological activity.

[11] A. Bruchfeld, J. Carrero, A. Qureshi, B. Lindholm, P. Bárány, O. Heimburger, M. Hu, Xinchun Lin, P. Stenvinkel, E. Miller.(2009). Elevated Serum Macrophage Migration Inhibitory Factor (MIF) Concentrations in Chronic Kidney Disease (CKD) Are Associated with Markers of Oxidative Stress and Endothelial Activation.

[12] Cintia D’Amato-Brito, Davide Cipriano, D. Colin, S. Germain, Y. Seimbille, J. Robert, F. Triponez, V. Serre-Beinier.(2016). Role of MIF/CD74 signaling pathway in the development of pleural mesothelioma.

[13] Bo Liu, Wei Luo, Ling Huang, Chun-ying Wei, Xiaorui Huang, Jun Liu, Ran Tao, Yingmin Mo, Xuebin Li.(2024). Migration Inhibition Factor Secreted by Peripheral Blood Memory B Cells Binding to CD74-CD44 Receptor Complex Drives Macrophage Behavior in Alzheimer’s Disease.

[14] Josefin Soppert, S. Kraemer, C. Beckers, Luisa Averdunk, J. M?llmann, B. Denecke, A. Goetzenich, G. Marx, J. Bernhagen, C. Stoppe.(2018). Soluble CD74 Reroutes MIF/CXCR4/AKT‐Mediated Survival of Cardiac Myofibroblasts to Necroptosis.

[15] H. Dunbar, I. Hawthorne, C. Tunstead, M. E. Armstrong, S. Donnelly, K. English.(2023). Blockade of MIF biological activity ameliorates house dust mite‐induced allergic airway inflammation in humanized MIF mice.

[16] Eszter Vámos, N. Kálmán, E. Sturm, B. Nayak, Julia Teppan, V. Vántus, D. Kovács, Lilla Makszin, Tamás Loránd, Ferenc Gallyas, Balázs Radnai.(2023). Highly Selective MIF Ketonase Inhibitor KRP-6 Diminishes M1 Macrophage Polarization and Metabolic Reprogramming.

[17] G. Pantouris, Junming Ho, Junming Ho, D. Shah, Syed, L. Leng, Vineet Bhandari, Vineet Bhandari, R. Bucala, Victor S. Batista, J. P. Loria, E. Lolis.(2018). Nanosecond Dynamics Regulate the MIF-Induced Activity of CD74.

[18] Laura La Paglia, M. Vazzana, M. Mauro, F. Dumas, A. Fiannaca, A. Urso, V. Arizza, A. Vizzini.(2023). Transcriptomic and Bioinformatic Analyses Identifying a Central Mif-Cop9-Nf-kB Signaling Network in Innate Immunity Response of Ciona robusta.

[19] Jie Yao, L. Leng, Weiling Fu, Jia Li, C. Bronner, R. Bucala.(2021). ICBP90 Regulates MIF Expression, Glucocorticoid Sensitivity, and Apoptosis at the MIF Immune Susceptibility Locus.

[20] Kübra ?ahin, A. Rustemoglu.(2023). Investigation of MIF gene promoter variations and their haplotypes in the Alzheimer disease in Turkish population.

[21] C. J. Ba?os-Hernández, J. E. Navarro-Zarza, R. Bucala, J. Hernández-Bello, I. Parra-Rojas, M. G. Ramírez-Due?as, S. García-Arellano, Luis Alexis Hernández-Palma, Andrea Carolina Machado-Sulbarán, J. Mu?óz-Valle.(2019). Macrophage migration inhibitory factor polymorphisms are a potential susceptibility marker in systemic sclerosis from southern Mexican population: association with MIF mRNA expression and cytokine profile.

[22] N. Yazdani, M. Ashtiani, M. M. Zarandy, S. Mohammadi, H. Ghazavi, Elnaz Mahrampour, P. Amiri, M. Amoli.(2013). Association between MIF gene variation and Meniere’s disease.

[23] Guoqing Li, Juan Xie, Xiao-yong Lei, Li Zhang.(2009). Macrophage migration inhibitory factor regulates proliferation of gastric cancer cells via the PI3K/Akt pathway.

[24] R. Lindner.(2017). Invariant Chain Complexes and Clusters as Platforms for MIF Signaling.

[25] A. Rupp, Sophie Bahlmann, Nicolai Trimpop, J. von Pawel, S.Holdenrieder.(2023). Lack of clinical utility of serum macrophage migration inhibitory factor (MIF) for monitoring therapy response and estimating prognosis in advanced lung cancer.

[26] Nour K. Younis, Z. Solhjou, Hengcheng Zhang, Abdullah B. El Kurdi, Ahmad Halawi, R. Bucala, Dongliang Zhang, Jamil R. Azzi.(2023). MIF-CD74: A Novel Inflammatory Pathway that Suppresses Allograft-Infiltrating Tregs During Rejection.

[27] Shuai Lin, Qianwen Sheng, Xiao-bin Ma, Shanli Li, P. Xu, Cong Dai, Meng Wang, Huafeng Kang, Zhijun Dai.(2022). Marsdenia tenacissima Extract Induces Autophagy and Apoptosis of Hepatocellular Cells via MIF/mToR Signaling.

[28] K. Tanese, Y. Hashimoto, Z. Berková, Yuling Wang, F. Samaniego, Jeffrey E. Lee, S. Ekmekcioglu, E. Grimm.(2015). Cell Surface CD74-MIF Interactions Drive Melanoma Survival in Response to Interferon-γ.

[29] Lichao Liu, Jian Wang, Ying Wang, Lingjuan Chen, Ling Peng, Ya-wen Bin, Peng Ding, Ruiguang Zhang, Fan Tong, Xiaorong Dong.(2024). Blocking the MIF-CD74 axis augments radiotherapy efficacy for brain metastasis in NSCLC via synergistically promoting microglia M1 polarization.

[30] L. Varinelli, Dario Caccia, C. Volpi, C. Caccia, M. De Bortoli, E. Taverna, A. Gualeni, Valerio Leoni, A. Gloghini, G. Manenti, I. Bongarzone.(2015). 4-IPP, a selective MIF inhibitor, causes mitotic catastrophe in thyroid carcinomas.

[31] M. Christopoulou, S. Skandalis, Eleni Papakonstantinou, Daiana Stolz, A. Aletras.(2023). WISP1 induces the expression of macrophage migration inhibitory factor in human lung fibroblasts through Src kinases and EGFR-activated signaling pathways.

[32] Junsong Chen, Wenke Xu, Luyang Meng, Xin Zhang, Meng Lin, Sheng Zhang, Yi Liu, Fang Guo.(2025). The Combination of MIF Inhibitor and AEP Targeted Inhibitor to Reduce Lung Metastasis in Breast Cancer and Its Mechanism.

[33] Xinzhuo Chen, Renhua Huang, Huiping Wang, Hao Xiao, Qian Li, Zhimin Zhai, Zhitao Wang.(2024). Single Cell RNA-Seq Analysis Revealed MIF/CD74 Pathway Determinants of BCMA CART Resistance in Relapsed/Refractory Multiple Myeloma.

[34] Alessandro Canella, S. Rajendran, Matthew Nazzaro, Claire Schmitt, Daniel Kreatsoulas, Wesley Wang, P. Rajappa.(2024). IMMU-15. CD74/MIF SIGNALING AXIS DISRUPTION IN BONE MARROW-DERIVED MYELOID CELLS DELAYS MALIGNANT PROGRESSION IN A PRECLINICAL MODEL OF GLIOMA.

[35] Justin D. Lathia, Adam Lauko, Kazuko Matsuda, Malath Makhay, L. Nayak, U. Chukwueke, Eudocia Lee, D. Reardon, R. Beroukhim, Tracy T. Batchelor, E. Aquilanti, P. Wen.(2023). CTIM-36. IMMUNOHISTOCHEMISTRY EVALUATION ON PRE-TREATMENT TUMOR TISSUE PREDICTS TREATMENT RESPONSE TO MN-166 (IBUDILAST) AND TEMOZOLOMIDE COMBINATION THERAPY IN GLIOBLASTOMA PATIENTS.

[36] W. Nothnick, A. Graham.(2022). Dissecting the miR-451a-Mif Pathway in Endometriosis Pathophysiology Using a Syngeneic Mouse Model: Temporal Expression of Lesion Mif Receptors, Cd74 and Cxcr4.

[37] Paula Terroba-Navajas, I-Na Lu, Isaak Quast, M. Heming, C. Keller, L. Ostendorf, A. E. Hauser, R. Mothes, Helena Radbruch, Frauke Stascheit, Andreas Meisel, H. Wiendl, G. Meyer zu H?rste, Nick Willcox, Jan D. Lünemann.(2025). Single-Cell Transcriptomics Identifies a Prominent Role for the MIF-CD74 Axis in Myasthenia Gravis Thymus.

[38] D. Rajasekaran, Sabine Gr?ning, C. Schmitz, S. Zierow, Natalie Drucker, M. Bakou, Kristian Kohl, A. Mertens, H. Lue, C. Weber, Annie Xiao, G. Luker, A. Kapurniotu, E. Lolis, J. Bernhagen.(2016).

Macrophage Migration Inhibitory Factor-CXCR4 Receptor Interactions.

[39] M. Lacy, Christos Kontos, Markus Brandhofer, Kathleen Hille, Sabine Gr?ning, Dzmitry Sinitski, P. Bourilhon, E. Rosenberg, C. Krammer, T. Thavayogarajah, G. Pantouris, M. Bakou, C. Weber, E. Lolis, J. Bernhagen, A. Kapurniotu.(2018). Identification of an Arg-Leu-Arg tripeptide that contributes to the binding interface between the cytokine MIF and the chemokine receptor CXCR4.

[40] Cristina Perpi?á-Viciano, Ali I?bilir, Aurelien M. Zarca, B. Caspar, L. Kilpatrick, S. Hill, M. Smit, M. Lohse, C. Hoffmann.(2020). Kinetic Analysis of the Early Signaling Steps of the Human Chemokine Receptor CXCR4.

[41] H. Cao, Verena Tadros, Benjamin Hiramoto, Kevin Leeper, C. Hino, Jeffrey Xiao, Bryan Pham, Do Hyun Kim, M. Reeves, C. Chen, J. Zhong, Ke K. Zhang, Linglin Xie, Samiksha Wasnik, David J. Baylink, Yi Xu.(2022). Targeting TKI-Activated NFKB2-MIF/CXCLs-CXCR2 Signaling Pathways in FLT3 Mutated Acute Myeloid Leukemia Reduced Blast Viability.

[42] Christos Kontos, O. El Bounkari, C. Krammer, Dzmitry Sinitski, Kathleen Hille, C. Zan, Guangyao Yan, Sijia Wang, Ying Gao, Markus Brandhofer, R. Megens, A. Hoffmann, J. Pauli, Y. Asare, Simona Gerra, P.

Bourilhon, L. Leng, H. Eckstein, W. Kempf, J. Pelisek, O. Gokce, L. Maegdefessel, R. Bucala, M. Dichgans, C. Weber, A. Kapurniotu, J. Bernhagen.(2020). Designed CXCR4 mimic acts as a soluble chemokine receptor that blocks atherogenic inflammation by agonist-specific targeting.

[43] Kangtao Jin, Lin Zheng, Ziang Xie, L. Ye, Jiawei Gao, C. Lou, Wenzheng Pan, Bin Pan, Shijie Liu, Zhenzhong Chen, D. He.(2020). Chicago sky blue 6B (CSB6B), an allosteric inhibitor of macrophage migration inhibitory factor (MIF), suppresses osteoclastogenesis and promotes osteogenesis through the inhibition of the NF-κB signaling pathway.

[44] Guozhi Yan, Rongrong Song, Jieyu Zhang, Zhihao Li, Zhantao Lu, Zijian Liu, Xiaokang Zeng, Jie Yao.(2024). MIF promotes Th17 cell differentiation in rheumatoid arthritis through ATF6 signal pathway.

[45] Shaojing Ye, N. Agalave, Fei Ma, Dlovan F. D. Mahmood, Asma Al-Grety, P. E. Khoonsari, L. Leng, Camilla I. Svensson, R. Bucala, Kim Kultima, Pedro L. Vera.(2024). MIF-Modulated Spinal Proteins Associated with Persistent Bladder Pain: A Proteomics Study.

[46] Weidong Chen, Yan Liao, Hao Yao, Yutong Zou, Ji Fang, Jiongfeng Zhang, Zehao Guo, Jian Tu, Junkai Chen, Zijun Huo, Lili Wen, Xianbiao Xie.(2025). Multiomics integration analysis identifies tumor cell-derived MIF as a therapeutic target and potentiates anti-PD-1 therapy in osteosarcoma.

[47] Prosperl Ivette Wowui, Richard Mprah, Marie Louise Ndzie Noah, J. Adu-Amankwaah, Anastasia Wemaaatu Lamawura Kanoseh, Li Tao, Diana Chulu, Simon Kumah Yalley, Saffia Shaheen, Hong Sun.(2025). Estrogen via GPER downregulated HIF-1a and MIF expression, attenuated cardiac arrhythmias, and myocardial inflammation during hypobaric hypoxia.

[48] B. Cheng, Qiaofang Wang, Yaodong Song, Yanna Liu, Yanyan Liu, Shujun Yang, Dejian Li, Yan Zhang, Changju Zhu.(2020). MIF inhibitor, ISO-1, attenuates human pancreatic cancer cell proliferation, migration and invasion in vitro, and suppresses xenograft tumour growth in vivo.

特別關(guān)注