日韩在线视频不卡-日一区二区三区-天堂国产+人+综合+亚洲欧美-精品国产一区二区三区久久狼-国产成人无码18禁午夜福利网址-国产在线拍偷自揄拍精品-九色91丨porny丨丝袜-久久天天躁狠狠躁夜夜av-99蜜桃臀久久久欧美精品-成人一区二区视频-狠狠操人人干-40岁干柴烈火少妇高潮不断-国产福利不卡-伊人98-丰满多毛的陰户视频-日韩一二三四五区-国产专区一线二线三线码-好男人社区影院www-国产精品2019-欧美三级一区

Your Good Partner in Biology Research

炎癥“核心三角”的深度對話:IL-6、IL-1β與TNF-α如何共舞,推動疾病進展?

日期:2025-11-05 17:31:33


炎癥是機體維持穩態與應對損傷的關鍵防御機制,但其調控失衡則成為多種慢性疾病的重要病理基礎。白細胞介素-6(IL-6)、白細胞介素-1β(IL-1β)和腫瘤壞死因子-α(TNF-α)被廣泛認為是炎癥反應的核心促炎細胞因子,構成免疫網絡的關鍵樞紐。

深入理解IL-6、IL-1β與TNF-α的分子網絡,對于精準診斷及開發多靶點炎癥治療策略具有重要意義。本文旨在闡明三種細胞因子在炎癥反應中的分子機制及其病理生理意義,探討三者在不同疾病中的協同作用與動態平衡,以期為您的研究提供幫助。


1. 什么是核心促炎細胞因子?

炎癥是機體抵御感染、修復組織及維持穩態的重要生理過程。該反應通過復雜的細胞與分子事件清除有害刺激并促進組織修復。然而,若炎癥反應持續或調控失衡,便會轉化為慢性炎癥,誘發代謝紊亂、自身免疫病、神經退行性疾病及腫瘤等多種病理狀態。研究表明,細胞因子網絡在炎癥反應中起核心調控作用,其中IL-6、IL-1β和TNF-α是關鍵的促炎信號介質 [1]

這些細胞因子由巨噬細胞、T細胞、B細胞及成纖維細胞等多種免疫細胞分泌,通過與特異受體結合激活下游信號通路,從而調節免疫反應與細胞存活。免疫網絡分析顯示,IL-6、IL-1β和TNF-α在拓撲結構中具有最高中心性,是維持免疫系統穩態的重要節點 [2]。它們的異常激活與糖尿病視網膜病變(DR)、系統性紅斑狼瘡(SLE)和結直腸癌(CRC)等疾病密切相關 [3-6]


2. IL-6、IL-1β與TNF-α的信號通路與調控

IL-6、IL-1β與TNF-α是炎癥反應的三大核心介質。它們通過特異受體啟動信號級聯,激活轉錄因子,調控多種促炎基因表達,從而驅動炎癥過程。本章將系統分析三者的信號轉導機制、相互調控與分子網絡。

2.1 IL-6信號傳導與效應

IL-6信號主要通過JAK/STAT3通路實現。IL-6與膜結合或可溶性IL-6受體(IL-6R)結合后,與gp130形成復合體,誘導gp130二聚化并激活JAK家族激酶。隨后STAT3被磷酸化、二聚化并轉位入核,調控急性期蛋白及炎癥相關基因表達 [8]。

IL-6的反式信號(trans-signaling)在炎癥調控中尤為關鍵。例如,IL-6/sIL-6R復合體能激活缺乏膜型IL-6R的細胞,增強破骨細胞分化與炎癥反應 [9,10]。在中樞神經系統中,IL-6/sIL-6R可與TNF-α或IL-1β協同,誘導星形膠質細胞IL-6自分泌表達 [11]。此外,miR-223-3p通過負向調控STAT3形成反饋回路,而TNF-α可上調該miRNA以平衡炎癥 [12,13]

在腫瘤中,IL-6/STAT3軸異常激活促進癌細胞增殖與轉移,如前列腺癌及肺癌中均觀察到STAT3持續磷酸化 [8,15]。病毒因子如KSHV編碼的vIL-6亦可激活宿主STAT3通路,提示該信號軸在感染性腫瘤中的重要作用 [16]

2.2 IL-1β信號傳導與效應

IL-1β以無活性的pro-IL-1β形式存在,其成熟依賴NLRP3炎性體介導的Caspase-1激活。炎性體由NLRP3、ASC和Caspase-1組成,能感知LPS、ATP及病毒等刺激,促使IL-1β與IL-18成熟釋放 [17-20]

成熟的IL-1β與IL-1R結合后,啟動MyD88依賴性通路,激活IRAKs與TRAF6,進而觸發NF-κB與MAPK通路,誘導TNF-α、IL-6等促炎基因轉錄 [21-24]

在骨關節炎、腸炎及膿毒癥心肌病等疾病中,IL-1β驅動軟骨細胞凋亡、基質降解與心肌功能障礙 [19][25][27]。其調控網絡涉及多種非編碼RNA:如miR-4701-5p通過抑制HMGA1緩解炎癥,lncRNA HAGLR沉默則通過miR-130a-3p/JAK1軸減輕軟骨細胞損傷 [26][27]

天然產物(如大蒜多糖)可通過抑制NF-κB/STAT3活化顯著降低IL-1β、IL-6與TNF-α水平 [14]。這些研究揭示IL-1β在炎癥級聯反應中的核心驅動力與多層調控機制。

2.3 TNF-α信號傳導與效應

TNF-α通過TNFR1和TNFR2受體介導信號轉導,廣泛調控細胞存活、凋亡及炎癥反應。其主要通路包括NF-κB和MAPK激活級聯 [29-32]。TNFR1活化后募集TRADD、RIP1與TRAF2,形成信號復合物并激活IKK復合體。IKKβ磷酸化IκBα后促使其降解,NF-κB二聚體(p65/p50)轉位入核并誘導IL-6、IL-1β、CCL2等基因表達 [30][22]。同時,TNF-α還通過p38和JNK調節炎癥、凋亡與應激反應 [24][30]

在類風濕關節炎(RA)中,TNF-α激活滑膜細胞NF-κB/MAPK信號,促進MMPs與IL-6釋放,驅動關節破壞 [30];在動脈粥樣硬化中,TNF-α與MCP-1共同參與早期斑塊形成 [34]。此外,其與IFN-γ可協同誘導CXCL10?炎性巨噬細胞表型,揭示不同炎癥疾病間共享的病理機制 [33]。在椎間盤退變與異種移植模型中,TNF-α的持續激活同樣導致組織損傷與排斥反應 [17][22]。綜上,TNF-α通過NF-κB與MAPK雙通路構成炎癥反應的核心調控軸。

2.4 細胞因子信號通路整合分析

IL-6、IL-1β與TNF-α下游信號具有顯著交叉性。IL-1β和TNF-α通過NF-κB/MAPK驅動炎癥擴散,而IL-6以JAK/STAT3為主軸維持反應持續。天然化合物Ebosin及植物醇通過抑制IKKβ、p38與JNK磷酸化有效降低炎癥反應 [20][28]。這種信號交叉使炎癥反應具備可塑性,也為多靶點干預提供理論依據。

2.5 細胞因子間的交叉與網絡調控

IL-6、IL-1β與TNF-α間的相互誘導與反饋調節構建了復雜炎癥網絡。

研究表明,IL-1β與TNF-α相互誘導并協同促進IL-6表達,形成炎癥放大回路 [7][8][24]。在神經系統中,IL-6/sIL-6R與IL-1β或TNF-α協同上調IL-6形成正反饋 [8]。此外,IL-1β可誘導GRP78上調并經p38 MAPK促進IL-6釋放 [21,22],揭示了炎癥信號與細胞應激間的交叉調控。


3. 病理生理學意義與疾病關聯

IL-6、IL-1β與TNF-α異常表達與多種疾病密切相關:

  • 在代謝性疾病中,三者在糖尿病視網膜病變中協同升高,促進血管生成與神經損傷 [3]
  • 在SLE中,其血清水平與疾病活動度呈正相關 [4]
  • 在腫瘤中,IL-6/STAT3信號持續激活驅動細胞增殖與免疫逃逸 [10][11]
  • 在感染性疾病與膿毒癥中,NLRP3炎性體驅動的IL-1β/IL-18釋放加劇組織損傷 [12]

這表明三者構成炎癥“核心三角”,其動態平衡對維持免疫穩態至關重要。


4. 治療策略與臨床前景

針對IL-6、IL-1β與TNF-α的靶向治療已在多種疾病中取得突破:

  • IL-6阻斷劑(如托珠單抗)在類風濕關節炎及細胞因子風暴中效果顯著;
  • IL-1β抑制劑(Canakinumab)可降低心血管炎癥;
  • TNF-α拮抗劑(Infliximab、Etanercept)已成為炎癥性疾病的標準療法。

此外,miRNA調控、炎性體抑制劑及天然化合物多靶點干預為新一代抗炎策略提供方向。


5. 總結

IL-6、IL-1β與TNF-α是炎癥信號網絡的核心樞紐,在維系免疫平衡與介導病理炎癥中發揮關鍵作用。三者通過NF-κB、MAPK及JAK/STAT3等通路形成多層交叉調控網絡,其精確的時空表達決定了炎癥反應的強度與持續性。異常激活或反饋失衡可導致慢性炎癥、組織損傷及多種疾病的發生,包括代謝紊亂、自身免疫病、神經炎癥與腫瘤等。系統解析三者的信號通路與相互作用,不僅深化了對炎癥反應分子機制的理解,也為精準抗炎與多靶點治療提供理論基礎。

值得注意的是,IL-6、IL-1β與TNF-α的檢測在科研與臨床研究中同樣具有重要意義。通過定量監測這些關鍵炎癥介質的水平,可用于評估疾病活動度、驗證炎癥模型、監控治療反應以及篩選潛在生物標志物。準確、靈敏的檢測手段能夠為基礎研究提供可靠數據支撐,并為臨床決策提供早期預警依據。

華美生物提供的炎癥因子ELISA檢測試劑盒套裝現涵蓋IL-6、IL-1β、TNF-α等多種核心炎癥因子,能夠幫助科研人員高效評估炎癥反應的分子特征,加速機制研究與轉化應用進程。



參考文獻:

[1] Paolo Tieri, Silvana Valensin, Vito Latora, Gastone C. Castellani, Massimo Marchiori, Daniel Remondini, Claudio Franceschi.(2004). Quantifying the relevance of different mediators in the human immune cell network.

[2] Sheng-Rong Zou, Yu-Jing Peng, Zhong-Wei Guo, Ta Zhou, Chang-gui Gu, Da-Ren He.(2007). An Empirical Study of Immune System Based On Bipartite Network.

[3] Songfu Feng, Honghua Yu, Ying Yu, Yu Geng, Dongli Li, Chun Yang, Qingjun Lv, Li Lu, Ting Liu, Guodong Li, Ling Yuan.(2018). Levels of Inflammatory Cytokines IL-1β, IL-6, IL-8, IL-17A, and TNF-α in Aqueous Humour of Patients with Diabetic Retinopathy.

[4] V. Umare, V. Pradhan, M. Nadkar, A. Rajadhyaksha, M. Patwardhan, K. Ghosh, A. Nadkarni.(2014). Effect of Proinflammatory Cytokines (IL-6, TNF-α, and IL-1β) on Clinical Manifestations in Indian SLE Patients.

[5] Sheng-Rong Zou, Zhong-Wei Guo, Yu-Jing Peng, Ta Zhou, Chang-Gui Gu, Da-Ren He.(2007). A Brand-new Research Method of Neuroendocrine System.

[6] D. Florescu, M. Boldeanu, Robert-Emmanuel ?erban, L. Florescu, M. ?erb?nescu, Mihaela Ionescu, L. Streba, Cristian Constantin, C. Vere.(2023). Correlation of the Pro-Inflammatory Cytokines IL-1β, IL-6, and TNF-α, Inflammatory Markers, and Tumor Markers with the Diagnosis and Prognosis of Colorectal Cancer.

[7] D. Skelly, E. Hennessy, M. Dansereau, C. Cunningham.(2013). A Systematic Analysis of the Peripheral and CNS Effects of Systemic LPS, IL-1Β, TNF-α and IL-6 Challenges in C57BL/6 Mice.

[8] B. Barton, T. Murphy, Patricia V Adem, R. Watson, R. Irwin, Hosea F. S. Huang.(2001). IL-6 signaling by STAT3 participates in the change from hyperplasia to neoplasia in NRP-152 and NRP-154 rat prostatic epithelial cells.

[9] S. Kwok, M. Cho, Yang-Mi Her, Hye‐Joa Oh, Mi-Kyung Park, Seon-Yeong Lee, Yun‐Ju Woo, J. Ju, Kyung-Su Park, Ho‐Youn Kim, Sung-Hwan Park.(2012). TLR2 ligation induces the production of IL-23/IL-17 via IL-6, STAT3 and NF-kB pathway in patients with primary Sjogren’s syndrome.

[10] W. Feng, Hongrui Liu, Tingting Luo, Di Liu, Juan Du, Jing Sun, Wei Wang, Xiuchun Han, Kaiyun Yang, Jie Guo, N. Amizuka, Minqi Li.(2017). Combination of IL-6 and sIL-6R differentially regulate varying levels of RANKL-induced osteoclastogenesis through NF-κB, ERK and JNK signaling pathways.

[11] Nicholas J. Van Wagoner, Jae-Wook Oh, P. Repovic, E. Benveniste.(1999). Interleukin-6 (IL-6) Production by Astrocytes: Autocrine Regulation by IL-6 and the Soluble IL-6 Receptor.

[12] E. Helset, T. Sildnes, R. Seljelid, Z. Konopski.(1993). Endothelin-1 stimulates human monocytes in vitro to release TNF-α , IL-1β and IL-6.

[13] Juan Wu, Ping Niu, Yueqiang Zhao, Yan-li Cheng, Weiping Chen, Lan Lin, J. Lu, Xuefeng Cheng, Zhiliang Xu.(2019). Impact of miR-223-3p and miR-2909 on inflammatory factors IL-6, IL-1?, and TNF-α, and the TLR4/TLR2/NF-κB/STAT3 signaling pathway induced by lipopolysaccharide in human adipose stem cells.

[14] Xin Shao, Jialong Li, Huidan Zhang, Xuhui Zhang, Chongzheng Sun, Ouyang Xin, Yong Wang, Xiyang Wu, Chunbo Chen.(2023). Anti-inflammatory effects and molecular mechanisms of bioactive small molecule garlic polysaccharide.

[15] Xinli Liu, Xu-tao Zhang, Jin Meng, Hong-Fei Zhang, Yong Zhao, Chen Li, Yang Sun, Q. Mei, Feng Zhang, Tao Zhang.(2017). ING5 knockdown enhances migration and invasion of lung cancer cells by inducing EMT via EGFR/PI3K/Akt and IL-6/STAT3 signaling pathways.

[16] J. Osborne, P. Moore, Yuan Chang.(1999). KSHV-encoded viral IL-6 activates multiple human IL-6 signaling pathways.

[17] Hanchao Gao, Qing Zhang, Jicheng Chen, D. Cooper, H. Hara, Pengfei Chen, Ling Wei, Yanli Zhao, Jia Xu, Zesong Li, Z. Cai, Shaodong Luan, Lisha Mou.(2018). Porcine IL‐6, IL‐1β, and TNF‐α regulate the expression of pro‐inflammatory‐related genes and tissue factor in human umbilical vein endothelial cells.

[18] Sara J Hamis, Fiona R Macfarlane.(2020). A single-cell mathematical model of SARS-CoV-2 induced pyroptosis and the effects of anti-inflammatory intervention.

[19] K. Fujimura, T. Karasawa, T. Komada, N. Yamada, C. Baatarjav, T. Matsumura, H. Mizukami, K. Kario, M. Takahashi.(2023). NLRP3 inflammasome-produced pro-inflammatory cytokines IL-1b and IL-18 are critical exacerbating factors of septic cardiomyopathy.

[20] Shanmuga S. Mahalingam, S. Jayaraman, Adhvika Arunkumar, Holly M. Dudley, Dona Anthony, C. Shive, Jeffrey M. Jacobson, P. Pandiyan.(2023). Distinct SARS-CoV-2 specific NLRP3 and IL-1β responses in T cells of aging patients during acute COVID-19 infection.

[21] Kunjan Khanna, Hui Yan, Muneshwar Mehra, N. Rohatgi, G. Mbalaviele, E. Mellins, R. Faccio.(2023). Tmem178 Negatively Regulates IL‐1β Production Through Inhibition of the NLRP3 Inflammasome.

[22] Gang Gao, F. Chang, Ting Zhang, Xinhu Huang, Chen Yu, Zhixia Hu, Mingming Ji, Yufen Duan.(2019). Naringin Protects Against Interleukin 1β (IL-1β)-Induced Human Nucleus Pulposus Cells Degeneration via Downregulation Nuclear Factor kappa B (NF-κB) Pathway and p53 Expression.

[23] C. Yu, W. Miao, Y. Y. Zhang, M. Zou, X. F. Yan.(2018). Inhibition of miR-126 protects chondrocytes from IL-1β induced inflammation via upregulation of Bcl-2.

[24] O. Krupkova, A. Sadowska, T. Kameda, W. Hitzl, O. Hausmann, Juergen Klasen, K. Wuertz-Kozak.(2018). p38 MAPK Facilitates Crosstalk Between Endoplasmic Reticulum Stress and IL-6 Release in the Intervertebral Disc.

[25] Yongqiang Liu, Qian Li, Zhi-Rui Gao, Fangcao Lei, Xuefeng Gao.(2021). Circ-SPG11 knockdown hampers IL-1β-induced osteoarthritis progression via targeting miR-337-3p/ADAMTS5.

[26] H. Zhang, Cheng Chen, Jie Song.(2022). microRNA-4701-5p protects against interleukin-1β induced human chondrocyte CHON-001 cells injury via modulating HMGA1.

[27] Yunzhou Zuo, Changjun Xiong, X. Gan, Wei Xie, Xiaokang Yan, Yanzhao Chen, Xu-gui Li.(2023). LncRNA HAGLR silencing inhibits IL-1β-induced chondrocytes inflammatory injury via miR-130a-3p/JAK1 axis.

[28] Fang Li, Hua Huang, Ping Zhao, Jie Jiang, Xufeng Ding, Donxgue Lu, Lijiang Ji.(2023). Curculigoside mitigates dextran sulfate sodium-induced colitis by activation of KEAP1-NRF2 interaction to inhibit oxidative damage and autophagy of intestinal epithelium barrier.

[29] Zhen-Tao Mo, Jie Zheng, Yu Liao.(2021). Icariin inhibits the expression of IL-1β, IL-6 and TNF-α induced by OGD/R through the IRE1/XBP1s pathway in microglia.

[30] Yang Zhang, Li-fei Wang, Liping Bai, R. Jiang, Jian-bo Wu, Yuan Li.(2022). Ebosin Attenuates the Inflammatory Responses Induced by TNF-α through Inhibiting NF-κB and MAPK Pathways in Rat Fibroblast-Like Synoviocytes.

[31] P. Pothacharoen, R. Chaiwongsa, Theerawut Chanmee, Orapin Insuan, Thanchanok Wongwichai, Phornpimon Janchai, P. Vaithanomsat.(2021). Bromelain Extract Exerts Antiarthritic Effects via Chondroprotection and the Suppression of TNF-α–Induced NF-κB and MAPK Signaling.

[32] Alexandra M S Carvalho, Luana Heimfarth, E. W. Pereira, Fabrício S Oliveira, I. A. Menezes, H. Coutinho, Laurent Picot, ?. Antoniolli, J. Quintans, L. Quintans-Júnior.(2020). Phytol, a Chlorophyll Component, Produces Antihyperalgesic, Anti-inflammatory, and Antiarthritic Effects: Possible NFκB Pathway Involvement and Reduced Levels of the Proinflammatory Cytokines TNF-α and IL-6.

[33] Fan Zhang, Joseph R. Mears, L. Shakib, Jessica I. Beynor, Sara Shanaj, I. Korsunsky, A. Nathan, L. Donlin, S. Raychaudhuri.(2021). IFN-γ and TNF-α drive a CXCL10+ CCL2+ macrophage phenotype expanded in severe COVID-19 lungs and inflammatory diseases with tissue inflammation.

[34] Abdush Salam Pramanik, Bibaswan Dey, G. P. Raja Sekhar.(2023). A Two-Phase Model of Early Atherosclerotic Plaque Development with LDL Toxicity Effects.